Allelic variation at high-molecular weight and low-molecular weight glutenin subunit genes in Moroccan bread wheat and durum wheat cultivars

نویسندگان

  • Fatima Henkrar
  • Jamal El-Haddoury
  • Driss Iraqi
  • Najib Bendaou
  • Sripada M. Udupa
چکیده

Glutenin is a major protein fraction contributing to the functional properties of gluten and dough. The glutenin constitutes 30-40% of the protein in wheat flour and about half of that in gluten. It is essential to identify correct glutenin alleles and to improve wheat quality by selecting alleles that exert favorable effects. Moroccan wheat cultivars are unique in West Asia and North Africa region, since many of them possess resistance to Hessian fly, a pest, which is becoming important in other countries in the region. Hence, these cultivars are being used as donor for the resistance in the breeding program. Here, we determine the allelic variation in high-molecular weight glutenin subunits (HMW-GS) and low-molecular weight glutenin subunits (LMW-GS) in Moroccan cultivars of bread and durum wheat using the gene-specific PCR markers. In 20 cultivars of bread wheat, 9 different allele variants were detected at HMW-GS and 13 different allele variants were detected at LMW-GS, in which the alleles Glu-A1b (2*), Glu-B1i (17 + 18), Glu-B1c (7*/7 + 9), Glu-D1d (5 + 10), Glu-A3c, Glu-B3 h, and Glu-D3b were the most frequents. In 26 cultivars of durum wheat, less allelic variation was found: seven different allele variants at HMW-GS and six different allele variants at LMW-GS were identified, in which the major alleles were Glu-A1c (null), Glu-B1b (7 + 8), Glu-B1e (20), Glu-A3c, and Glu-B3d. The mean value of the genetic diversity for the glutenin loci was 0.502 in bread wheat and 0.449 in durum wheat. Most of the glutenin alleles carried by Moroccan bread wheat cultivars impart good bread-making quality. Most of the durum wheat glutenin alleles were related to low strength dough or poor quality and need to be improved. To improve quality of Moroccan durum wheat, essentially, Glu-A1c and Glu-B3d alleles of the genes should be replaced with the better alleles through breeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Linkage Map of Glu-D1 and Allelic Variation of HMW Glutenin Subunits in Some Iranian Bread Wheat genotypes

High-molecular weight (HMW (glutenin subunits are encoded by the Glu-1 loci (Glu-A1, Glu-B1 and <sp...

متن کامل

PCR-based markers for identification of some allelic variation at Glu-1 and Glu-3 loci in common wheat

Marker assisted selection (MAS) is a tool for breeding, screening, and genetic characterization of germplasm. Allelic variation of both high and low molecular weight glutenin subunits (HMW/LMW-GS) is associated with the rheological properties of wheat flour. In this study, we investigated glutenin pattern using SDS-PAGE and their PCR based on DNA markers in 60 advanced wheat lines and cultivars...

متن کامل

Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat

Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker sy...

متن کامل

Genetic divergence for high-molecular weight glutenin subunits (HMW-GS) in indigenous landraces and commercial cultivars of bread wheat of Pakistan.

Wheat flour quality is an important consideration in the breeding and development of new cultivars. A strong association between high-molecular weight glutenin subunits (HMW-GS) and bread making quality has resulted in the widespread utilization of HMW-GS in wheat breeding. In this study, we analyzed 242 lines of wheat, including landraces from the provinces of Punjab and Baluchistan, as well a...

متن کامل

Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes.

Bread wheat (Triticum aestivum) is an allohexaploid species, consisting of three subgenomes (A, B, and D). To study the molecular evolution of these closely related genomes, we compared the sequence of a 307-kb physical contig covering the high molecular weight (HMW)-glutenin locus from the A genome of durum wheat (Triticum turgidum, AABB) with the orthologous regions from the B genome of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017